FunGeneClusterS: Predicting fungal gene clusters from genome and transcriptome data
نویسندگان
چکیده
INTRODUCTION Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology and industrial biotechnology applications. We have previously published a method for accurate prediction of clusters from genome and transcriptome data, which could also suggest cross-chemistry, however, this method was limited both in the number of parameters which could be adjusted as well as in user-friendliness. Furthermore, sensitivity to the transcriptome data required manual curation of the predictions. In the present work, we have aimed at improving these features. RESULTS FunGeneClusterS is an improved implementation of our previous method with a graphical user interface for off- and on-line use. The new method adds options to adjust the size of the gene cluster(s) being sought as well as an option for the algorithm to be flexible with genes in the cluster which may not seem to be co-regulated with the remainder of the cluster. We have benchmarked the method using data from the well-studied Aspergillus nidulans and found that the method is an improvement over the previous one. In particular, it makes it possible to predict clusters with more than 10 genes more accurately, and allows identification of co-regulated gene clusters irrespective of the function of the genes. It also greatly reduces the need for manual curation of the prediction results. We furthermore applied the method to transcriptome data from A. niger. Using the identified best set of parameters, we were able to identify clusters for 31 out of 76 previously predicted secondary metabolite synthases/synthetases. Furthermore, we identified additional putative secondary metabolite gene clusters. In total, we predicted 432 co-transcribed gene clusters in A. niger (spanning 1.323 genes, 12% of the genome). Some of these had functions related to primary metabolism, e.g. we have identified a cluster for biosynthesis of biotin, as well as several for degradation of aromatic compounds. The data identifies that suggests that larger parts of the fungal genome than previously anticipated operates as gene clusters. This includes both primary and secondary metabolism as well as other cellular maintenance functions. CONCLUSION We have developed FunGeneClusterS in a graphical implementation and made the method capable of adjustments to different datasets and target clusters. The method is versatile in that it can predict co-regulated clusters not limited to secondary metabolism. Our analysis of data has shown not only the validity of the method, but also strongly suggests that large parts of fungal primary metabolism and cellular functions are both co-regulated and co-located.
منابع مشابه
The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملDiscovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus ...
متن کاملTranscriptome Sequencing of Guilan Native Cow in Comparison with bosTau4 Reference Genome
RNA-sequencing is a new method of transcriptome characterization of organisms. Based on identity and relatedness, there are large genetic variations among different cattle breeds. The goal of the current study was to sequence the transcriptome of Guilan native cow and compare with available reference genome using RNA-sequencing method. Blood samples were collected from 14 Guilan native cows and...
متن کاملMotif-independent de novo detection of secondary metabolite gene clusters—toward identification from filamentous fungi
Secondary metabolites are produced mostly by clustered genes that are essential to their biosynthesis. The transcriptional expression of these genes is often cooperatively regulated by a transcription factor located inside or close to a cluster. Most of the secondary metabolism biosynthesis (SMB) gene clusters identified to date contain so-called core genes with distinctive sequence features, s...
متن کاملGenome analysis FGMP: assessing fungal genome complete- ness and gene content
Motivation: Inexpensive high-throughput DNA sequencing has democratizing access to genetic information for most organisms so that access to a genome or transcriptome of an organism is not limited to model systems. However, the quality of the sampled genomes can vary greatly which hampers utility for comparisons and meaningful interpretation. The uncertainty of the completeness of a given genome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2016